

STIRLING Electric Generator
SHR-STIRLING

In most foundries, it is necessary to extract heat from the gases to reduce the temperature at which they are released into the environment. Also, postrefinement processes often require gases to be at the appropriate temperature to carry out the necessary reactions. For example, electrostatic precipitators require a maximum temperature of 350°C for efficient operation.

The Stirling engine is directly integrated into the hot spots of the process, converting heat into electrical energy. This ensures early and substantial temperature reductions and provides a straightforward means of transporting useful energy.

Furthermore, a set of Stirling engines distributed throughout the foundry enables electricity supply (either direct or backup) to various operations as needed.

The SHR-STIRLING Stirling engine, developed by Ambar S.A., extracts heat directly from hotspots within the pipelines or any other hotspots in the process, provided they have temperatures exceeding 300°C and can reach as high as 1000°C and more in certain cases.

SPECIFICATIONS

- Output Power: 1 10[kW]
- Output Voltage: 220/110 [VAC]; 50 60 [Hz]
- Operating Temperature: from 300°C
- Approximate Diameter: 400 mm

FEATURES

- Only requires heat to operate.
- Works on various surface conditions.
- Installation on any hot surface.
- Installation on pipes with hot gas inside.

APPLICATIONS

- Electricity generation from foundry furnaces (melting, conversion, others).
- Electricity generation from pipes with hot gas flowing inside.
- Heat extraction to reduce gas temperature to the level required for automation and control processes.

STIRLING Electric Generator SHR-STIRLING

SPECIFICATIONS SHR-STIRLING	
Stirling engine type	single cylinder free-piston
Linear alternator type	1 window permanent magnet with magnetic springs
Engine/Alternator mass	60 kg
Gross mechanical power	1250 Watts
Gross electrical power	1100 Watts
Output	220/110 VAC at 50 - 60 Hz
Overall efficiency (electric out/heat in)	23%
Operating frequency	50 - 60 Hz
Operating pressure	30 bar
Working fluid	nitrogen/air
Expansion space temperature	400°C
Compression space temperature	55°C
External heater wall temperature	500°C
External cooler wall temperature	40°C
Piston bearing	non-contact hydrostatic with PTFE coating
Displacer bearing	non-contact hydrostatic with PTFE coating
Piston springing	free
Displacer springing	planar mechanical springs
Piston seals	non-contact clearance
Displacer seals	non-contact clearance
External hot-end heat-exchanger	stainless steel
Internal hot-end heat-exchanger	brazed folded copper fins
External cold-end heat-exchanger	brazed copper fins with wáter jacket
Internal cold-end heat-exchanger	soldered folded copper fins
Regenerator	stacked foil annular gap

AMBAR S.A.